Need To Know

- Solving triangle theory
- Law of Sine
- Application

Consider $\triangle \mathrm{ABC}$:
h has two sub-triangles
$\sin \mathrm{A}=$
$\sin C=$

Application

Solve the triangle given two angles 315
$\angle \mathrm{B}=13.4^{\circ}, \angle \mathrm{C}=24.8^{\circ}$ and $\mathrm{a}=315 \mathrm{~cm}$

Find x

Application
\#30 150 ft antenna
\angle of elevation to the top of antenna $=28.5$
\angle of elevation to bottom of antenna $=23.5$
Find the height of hill

7.2 The Ambiguous Case

Need To Know

- Solving Triangles with 2 Sides
- The Ambiguous Case
- Test for solutions
- Practice/Application

Examine the SketchPad illustration to determine if given an angle and the next two consecutive sides, will a triangle be solvable?

$$
\angle \mathrm{A}=55^{\circ}, \mathrm{b}=36 \text { and } \mathrm{a}=18
$$

Solve SSA Triangles

$\angle \mathrm{A}=112.0^{\circ}, \mathrm{a}=43.0$ and $\mathrm{b}=22.0$
$\angle \mathrm{C}=65^{\circ}, \mathrm{b}=7.6$ and $\mathrm{c}=7.1$
end

. 3 Law of Cosine

Need To Know
縈

- Law of Cosine
- Practice and Applications

Set Up

- Can we use the Law of Sine to solve SAS?

Look at side $\underline{\boldsymbol{a}}$ with Pythagorean theorem

- Solve Triangles

$\angle \mathrm{B}=23^{\circ}, \mathrm{a}=3.7 \mathrm{~m}$ and $\mathrm{c}=6.4 \mathrm{~m}$
Find side b.
$\mathrm{a}=51 \mathrm{~cm}, \mathrm{~b}=24 \mathrm{~cm}$ and $\mathrm{c}=31 \mathrm{~cm}$
Find the largest angle.

Application

\#24 Two ships leave the harbor at the same time.
One goes $14 \mathrm{mph} \mathrm{S} 13^{\circ} \mathrm{W}$, the other $12 \mathrm{mph} \mathrm{N} 75^{\circ} \mathrm{E}$.
Find the distance between them after 3 hours.

Need To Know

- Three formulas for triangle area
- Practice and application
- You don't need to memorize the formulas

The Area of a Triangle - SAS

Find the area formula without reference to h.

$$
\begin{aligned}
\text { Area } & =1 / 2 b c \sin A \\
& =1 / 2 a b \sin C \\
& =1 / 2 a c \sin B
\end{aligned}
$$

The Area of a Triangle - ASA

Given: ASA $=\angle A, C, \angle B$
Area $=1 / 2(h) C$
Note: $\mathrm{h}=\mathrm{b} \sin \mathrm{A}$

Area $=\frac{a^{2} \sin B \sin C}{\sin A}$
$x=\frac{b^{2} \sin A \sin C}{\sin B}$
$x=\frac{c^{2} \sin A \sin B}{\sin C}$

The Area of a Triangle - SSS

Heron's Formula
Area $=\sqrt{s(s-a)(s-b)(s-c)}$
where $a, b, \& c$ are the sides and $s=1 / 2(a+b+c)$

Practice

Find the area a triangle.
$\angle \mathrm{A}=14^{\circ} 20^{\prime}, \angle \mathrm{C}=75^{\circ} 40^{\prime}$

$$
\text { Area } \begin{aligned}
& =1 / 2 b c \sin A \\
& =1 / 2 a b \sin C \\
& =1 / 2 a c \sin B
\end{aligned}
$$

and $\mathrm{b}=2.72 \mathrm{ft}$.

$$
\begin{array}{r}
\text { Area }=\frac{a^{2} \sin B \sin C}{\sin A} \\
x=\frac{b^{2} \sin A \sin C}{\sin B} \\
x=\frac{c^{2} \sin A \sin B}{\sin C} \\
\text { Area }=\sqrt{s(s-a)(s-b)(s-c)}
\end{array}
$$

Practice

Find the area a parallelogram

$$
\begin{array}{r}
\text { Area } \begin{array}{r}
=1 / 2 \mathrm{bc} \sin \mathrm{~A} \\
=1 / 2 \mathrm{ab} \sin \mathrm{C} \\
=1 / 2 \mathrm{ac} \sin \mathrm{~B}
\end{array} \\
\text { Area }=\frac{a^{2} \sin B \sin C}{\sin A} \\
x=\frac{b^{2} \sin A \sin C}{\sin B} \\
x=\frac{c^{2} \sin A \sin B}{\sin C} \\
\text { Area }=\sqrt{s(s-a)(s-b)(s-c)}
\end{array}
$$

end

7.5 Vector - Algebraic Approach

Need To Know

- Unit Vectors
- Notation and Magnitude
- Vector Operations

1. Addition
2. Subtraction
3. Scalar multiplication

Notation
$V=2 i-3 j$ or $\langle 2,-3>$
Magnitude
If $V=a i+b j$ or $<a, b>$
then \qquad

Add and Subtract Vectors

If $U=4 i+5 j$ and $V=7 i-4 j$, then find
U + V
$\mathrm{U}-\mathrm{V}$

- Scalar Multiplication numbervector =?

If $U=4 i+5 j$ and $V=7 i-4 j$, then find
2U
$3 U-4 V$

Luke and Beth are rollerblading. Luke is pushing Beth up a hill with an 8.5 incline. He stops and hold Beth in place. If Beth weighs 85 lbs . Find the force that Luke must push to keep Beth from rolling backwards.

- Dot product
- Vector Angle Theorem
- Work

Definition:
If $U=a i+b j$ and $V=c i+d j$
Then $\mathrm{U} \bullet \mathrm{V}=$ \qquad
Example:
If $U=4 i+5 j$ and $V=7 i-4 j$, then find U•V

Vector Angle Theorem

Theorem 7.1
where θ is the angle between U and V .
Example:
If $U=4 i+5 j$ and $V=7 i-4 j$, then find θ.

Vector Angle Theorem

Theorem 7.2
$\mathrm{U} \bullet \mathrm{V}=0$ is the same thing as $\mathrm{U} \perp \mathrm{V}$.
Proof:

Determine if U is perpendicular to V or W :
$U=4 i-5 j$ and $V=7 i-4 j$ and $W=-10 i-8 j$

WORK

Theorem 7.3
Work $=F \bullet d$,
a dot product where F is a constant force exerted over a
displacement vector d . The resulting units are ft -lbs. if F is lb and d is ft .
Ex: A car is pushed down a level street by exerting a force of 75 lbs at an angle of 10 with the horizontal. How much work is done to push the car 50ft?

